User's Manual

3563 多路系列

使用手册

电池内阻测试仪

2021-01-21

常州市和普电子科技有限公司

手册版本 V3.5

目录

引言		9
核实	2包装物品	9
安全	信息	11
操作	注意事项	13
第−	-章 概述	16
1.1	简介	16
1.2	性能特点	17
1.3	各部分的名称与操作概要	18
1.4	外形尺寸	22
1.5	页面构成	23
第二	二章 测试前的准备	25
2.1	测试流程预览	25
2.2	基本参数设置流程	28
2.3	测量前的检查	29
2.4	测试线的连接方法	30

第三章 基本设置	32
3.1 设置测试量程	
3.2 设置测试速度	34
3.3 测试模式设置	35
3.4 触发延时设置	
3.5 设置测试触发源	
3.6 平均次数设置	
3.7 广播模式设置	40
3.8 多路测试设置	41
3.9 系统设置	42
3.9.1 语言设置	42
3.9.2 电源频率设置	43
第四章 比较器设置	44
4.1 比较器功能	
4.1.1 比较模式开启	44
4.1.2 比较结果信号输出方式	44

4.2	分选功能设置	45
4.2.	1 选择比较器设置界面	. 45
4.2.	2 选择相关菜单项	. 45
4.3	讯响方式设置	49
4.4	计数设置	50
4.5	绝对值设置	51
第王	ī章 测量	52
5.1	启动测试	52
5.2	测量值显示	53
5.3	进行调零	54
第六	₹章 测量面板保存	58
6.1	保存面板设置	58
6.2	调取测量设置	59
6.3	保存测量数据设置	59
6.4	保存测量数据导出	60
第七	5章 多路测试	61

7.1 多路测试设置	51
7.2 连接器与端子的配置	53
7.3 多路测试线定义	ô5
7.4 内部电路构成	56
第八章 EXT I/O 口 (Handler)6	57
8.1 EXT I/O 端口与信号6	58
8.1.1 端口信号详解	69
8.1.2 端口信号连接方式	72
8.2 时序图	74
8.2.1 外部触发时的时序图	74
8.2.2 外部触发时的读取流程	75
第九章 通讯7	76
9.1 RS232 通讯方式	76
9.1.1 接口与电缆	76
9.1.2 RS232 连接方式	77
9.1.3 RS232 通讯设置	77

9.2 RS485 通讯万式7	79
9.2.1 RS485 连接方式	79
9.2.2 RS485 通讯设置	79
9.3 LAN 通讯方式	31
9.3.1 接口与电缆	81
9.3.2 LAN 连接方式	81
9.3.3 LAN 通讯设置	82
9.4 USB 接口	33
第十章 参数8	84
第十章 参数8 10.1 一般参数	34 34
 第十章 参数	34 35
 第十章 参数	34 34 35 36
 第十章 参数	34 35 36
 第十章 参数	34 35 36 36
 第十章 参数	34 35 36 36 37

12.1	寄存器概述	94
12.1.1	保持寄存器	94
12.1.2	输入寄存器	95
12.2	MODBUS 指令	96
12.2.1	读保持寄存器指令(0x03)	96
12.2.2	读输入寄存器指令(0x04)	97
12.2.3	写寄存器指令 (0x10)	98
12.2.4	触发仪器测试指令(0x74)	99

感谢您选择和普科技制造的"3563系列电池内阻测试仪"。为了使您的仪器 发挥最佳性能,请首先阅读本手册,并将它保留好,供将来参考使用。

注册商标

Windows 和 Excel 是微软公司在美国或其它国家的注册商标。

核实包装物品

接收到仪器时,请仔细检查,确保在运输途中仪器没有受损。此外,还需特别 检查配件、面板开关和连接器。如果发现仪器损坏或仪器未能按说明书写的那样运 行,请与经销商或公司代表处联系。

如要运输此仪器, 应使用原包装, 并用双层纸箱包装。运输途中的损坏不在保修范围内。

核实包装物品:

	项目	数量
1	3563 电池内阻测试仪	1
2	使用手册	1
3	RS232 通讯线缆	1
4	测试线	1
5	电源线	1
6	934X-12-1.5m	1

3563 电池内阻测试仪

9363A 测试线

安全信息

仪器的设计符合 IEC 61010 安全标准, 运输前已经彻底通过安全试验。但如 果使用时操作不当,可能造成伤亡事故,同时损坏仪器。使用前应确保通读理解本 说明书及其规定的注意事项。对于非因仪器本身缺陷造成的事故和伤害,我公司不 承担任何责任。

安全标志

本手册包含有安全操作仪器所必须的信息和警告,这些都是保证仪器处于安全操作状态所必需的。使用前,必须仔细阅读以下安全注意事项。

本手册中 ①号所示为特别重要的信息,用户在使用机器前应仔细阅读。 ① 号刷在仪器上,表示用户必须对照手册中相应主题,然后才能使用相应功能。

表示 DC (直流)。

表示接地端。

精确度

我们采用 f.s. (满量程)、rdg. (读数)和 dgt. (分辨率)值来定义测量公差,含义如下:

f.s. (最大显示值或测量范围)

最大显示值或测量范围。通常为当前所选量程名。

rdg. (读数或显示值) 当前测量的值和测量仪器上显示的值。

dgt. (分辨率)

数字式测试仪的最小可显示单位,也就是使得数字显示器显示最小有效数字 "1" 的输入值。

操作注意事项

仪器的使用环境

- 操作温度和湿度:
 0 至 40°C, 80%RH 以下 (无凝结)
- 确保精度的温湿度范围:
 23 ± 5°C, 80%RH 以下(无凝结)
- 为避免故障或损坏仪器,切勿将测试仪放置在以下场合
- 阳光直射高温的场所
- 会喷溅到液体温度高,出现凝结的场所
- 暴露在灰尘较多的场所
- 腐蚀性或爆炸性气体充斥的场所
- 存在强电磁场,电磁辐射的场所
- 机械振动频繁的场所

预先检查

首次使用仪器前,核实操作是否正常,确保在仓储或运输途中没有损坏。如果 发现任何损坏,请与经销商或公司代表处联系。

使用仪器前,确保测试线是否绝缘良好,导体是否暴露。如 果发生类似情况,使用此仪器可能有电击危险,请与经销商 警告 /!\ 或公司代表联系更换设备。

仪器的使用

▲在险	为了避免发生电击,不要拆卸仪器外壳。仪器运行中其内部
	会有高压和高温部分存在。
☆ 注音	为了避免损坏仪器,在搬动和操作仪器时,应防止物理撞击。
小江忌	应格外注意防止仪器掉落。
<u>注记</u>	仪器用完后,应关闭电源。

	避免电击和短路,必须遵守以下规程:
	•请不要淋湿本仪器,或者用湿手进行测量。否则会导
<u>▲危险</u>	致触电事故。
	•请勿进行改造、拆卸或修理。否则会引起火灾、触
	事故或人员受伤。
	•请勿放置在不稳定的台座上或倾斜的地方。否则可能
	会因掉落或翻倒而导致受伤或主机故障。
∧ 注音	•为了防止本仪器损坏,在搬运及使用时请避免震动、
	碰撞。尤其要注意因掉落而造成的碰撞。
	•为避免损坏本仪器,请勿将测量端子与EX.I/O端子、
	通讯端子相连。

测试线的使用

▲在除	为了防止发生触电事故, 请勿将测试线顶端和有电压的线
	路发生短路。
	• 在进行测试时,为安全起见,应使用仪器自带测试线选件。
	•为避免损坏测试线,不要折弯或拉伸测试线。
<u> </u>	•测试线前端探针很尖锐,注意不要被划伤。
	•为避免损坏测试线,在插拔测试线时,手不要拿电缆,应
	握住连接器。

第一章 概述

1.1 简介

3563是一种高精度宽量程、采用高性能微处理器控制的电池内阻测试仪。 内阻量程范围为3mΩ~3kΩ,最小分辨率0.1μΩ,最大显示32000数。电压 量程范围为6V~60V,最小分辨率10μV,最大显示600000数。

3563系列仪器支持多路扫描测试功能,通过加配本公司多路扫描测试仪, 即可同时扫描测量多路电池。

仪器拥有RS232/RS485/LAN, 三种通讯接口, 配备有两套通讯指令协议。 使用以太网和RS232通讯时, 仪器使用SCPI (Standard Command for Programmable Instrument可程控仪器标准命令集)。使用RS485通讯时, 仪器使用MODEBUS指令协议。用户可以高效完成远程控制和数据采集功能 以及仪器组网。

3563可用于测试各种锂电池、镍氢电池、镍镉电池、纽扣电池、柱状电 池、软包电池等等。

3563/A-12H/24H多路电池测试仪可迅速完成最大24路电池的内阻和电 压分选测试,基于经典型3563完全相同的测试电路,该款设备的测试速度和 精准性在业内处于领先地位,是自动化测试配套厂家的理想配套工具。

1.2 性能特点

外观

- •显示采用3.5寸高分辨率TFT屏显示,操作简单
- •机身小巧,功能强大

测试性能卓越

- 内阻最小分辨率0.1µΩ
- 电压最小分辨率 10µV

快速测试

• 最小测试周期仅需8.6ms

四端测试

• 高精度测量低内阻值

丰富的接口配置

- HANDLER
- •RS-232C接口
- •RS-485接口
- 以太网接口
- U盘接口

供电

- •100~256 V宽电源供电
- 电源频率50Hz/60Hz
- 最大功耗 10W

1.3 各部分的名称与操作概要

后视图

底部

按键

按键	说明
F1	功能键 F1
F2	功能键 F2
F3	功能键 F3
F4	功能键 F4
F5	功能键 F5
ESC	功能退出键
ENTER	功能确定键
PAGE	[页面切换键]切换[测试页面]<-> [比较器页面] <-> [设定页面] <-> [文件页面]
СОМР	比较器开启/关闭键

1.4 外形尺寸

1.5 页面构成

测量页面

多路页面

A			MA	AN 🗹
	多路	比较器	设定	文件
01. 02. 03. 04. 05. 06. 07.	R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00	000V 13 000V 14 000V 15 000V 16 000V 16 000V 17 000V 18 000V 19	 R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ 	V:3.00000V V:3.00000V V:3.00000V V:3.00000V V:3.00000V V:3.00000V V:3.00000V V:3.00000V
08. 09. 10. 11. 12.	R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00 R:1.0000mΩ V:3.00	000V 20 000V 21 000V 22 000V 23 000V 24	 R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ R:1.0000mΩ 	V:3.00000V V:3.00000V V:3.00000V V:3.00000V V:3.00000V

比较器页面

文件页面

A			MAN	۶ N
测量	多路	比较器	〕 设定	文件
类型 .s	et	No.	State	
		01 02 03 04 05 06 07 08	Used Unused Unused Unused Unused Unused Unused Unused	V
.set	.dat			

2.1 测试流程预览

仪器保持在电源关闭状态,按以下步骤进行测试前的准备。

1. 关闭仪器电源, 连接测试线

2. 插入电源线

保证电源线接地良好,有利于测试的稳定。

3. 将仪器尾部的电源拨到"开"状态

此时, 仪器内部电源已经接通, 仪器处于待机状态。

4. 按面板电源按钮开启电源

处于待机状态时,面板电源按键灯为红色,按面板电源键,电源开启, 屏幕点亮,面板按键灯变成绿色。

5. 设置测试参数 (详细参见 3.1 章节)

6. 进行测试

7. 测试结束,关闭电源

2.2 基本参数设置流程

2.3 测量前的检查

在使用前,请先确认没有因保存和运输造成的故障,并在检查和确认操 作之后再使用。确认为有故障时,请与本公司销售网点联系。

本仪器与外围设备的确认

检查项目	处理方法	
本仪器是否损坏或有无龟裂之处?	有损伤时不要使用,请送修。	
内部电路是否露出?		
端子上是否附着金属片等垃圾?	附着时,请用棉签等擦净。	
测计化的从中方工业也式全民零	有损坏时,可能会导致测量值不稳	
测试线的外反有元破顶或並周路	定或产生误差。	
山(建议更换为没有损坏的电线。	

电源接通时的确认

检查项目	处理方法
仪器尾部电源开关打开后,观察仪	请通过按键灯是否点亮进行确认时
器面板电源键灯是否变亮?	候处于待机状态,否则请送修。
接通电源时是否屏幕全部点亮,测	显示不同时,可能是本仪器内部发
量画面显示是否正常?	生了故障,请送修。

2.4 测试线的连接方法

- 测试线端口很尖锐,注意不要被划伤。
- •为安全起见,应使用仪器附带的测试线。
- •为避免电击,应确保正确连接测试线

1.9363-A 测试夹型测试线 (测试软包电池)

2.9363-B 测试针型测试线

第三章 基本设置

为了正确使用本仪器,应在进行测试前阅读此章。

3.1 设置测试量程

量程设置分为手动量程和自动量程两种。自动量程仪器会根据被测 电池自动选择一个合适的量程来测试。

手动量程设置:

在测量界面下,按[F1]-[F4]键,可以切换量程,即使自动量程功能 打开时,手动量程切换也有效(自动量程开启时,手动切换量程时,自动 量程功能会自动关闭)。

在测量界面下,按[F5]键切换自动量程。设为自动量程时,[AUTO]标记点亮,关闭自动量程功能时,[AUTO]标记不显示。

3.2 设置测试速度

在测试页面按[RATE]键,可以切换当前测试速度。超快速的采样周期为 100 次/秒,快速的采样周期为 50 次/秒,中速的采样周期为 20 次/秒,慢速的采样周期为 3 次/秒。

3.3 测试模式设置

在测试页面按[PAGE]键,可以切换到设定页面。

1. 选择参数设置界面

按[PAGE]键选择 参数设置页面

2. 选择相关菜单项

A			Ν	IAN	困
测量	多路	比较器	设定	(文化	+)
—— 测量设定 测试模式 <u>R-V</u> 平均次数 OFI	 触发延时 广播模式 	0.000 S	触发源 MA 多路测试 ON	N	
— 通讯设定 模式 RS232	波特率 38400] 协议 SCI	PI 地址	01	
—— 系统设定 语言 中文	电源频率 50H	Z			
R	V	R-V			
F1	F2	F3			

按[F1] 设定 R 模式,只测试和显示电阻 (如下图);按[F2]设定 V 模式,只测试和显示电压;按[F3]选择 R-V 模式,同时测试并显示电压 和电阻。

A			MAM	N AUTO 🗹
测量	多路	比较器	设定	文件
模式 R-V	速度快	速 量程R	3mΩ 量	└程V 6V
	R: 1	.000	0mΩ	
量程R+	量程R-	量程V+	量程V-	量程自动

3.4 **触发延时设置**

设置触发延时,调整测量稳定的时间。通过使用该功能,即使被测对 象接触不稳定,也可以在内部电路稳定之后开始测量。

1. 选择参数设置界面

按[ENTER]键进入设置,按上下左右键设置数字,如果增大延迟时间,测量值的显示更新则会变慢。

3.5 设置测试触发源

用户可以进行选择内部触发/外部触发/手动触发/自动触发。

1. 选择参数设置界面

2. 选择相关菜单项

A			N	IAN	函
测量	多路	比较器	设定	(文件	
 测试模式 R-V 平均次数 OFF 通知设定 	】 触发延时 - 广播模式	0.000 S	触发源 MAN B路测试 ON	4	
展讯QLE 模式 RS232	波特率 38400	协议 SCF	PI 地址	01	
── 系统设定 ── 语言 <mark>「中文」 电源频率 50HZ </mark>					
INT	MAN	EXT	AUT		
F1	F2	F3	F4		

菜单项	意义
[INT]	内部触发 (仪器内部循环触发测试)
[EXT]	外部触发(外部 IO 口信号触发,参见第 7 章)
[MAN]	手动触发(按面板 TRG 键触发一次测试)
[AUT]	自动测试(自动判断是否接好被测件并测试)
3.6 平均次数设置

对多个测量值进行平均处理并显示。通过使用该功能可以减小测量值的跳动,同时起到抑制干扰的作用。

平均次数:	
OFF ↔ 2 ↔ 3 ↔↔	

1. 选择参数设置界面

2. 选择相关菜单项

按[F1] [F2]加减平均次数或关闭平均次数。

菜单项	意义		
[OFF]	平均次数功能关闭		
[2]	取2次平均值显示		
[3]	取3次平均值显示		
[]	取 4~14 次平均值显示		
[15]	取 15 次平均值显示		
[16]	取 16 次平均值显示		

3.7 **广播模式设置**

广播模式 ON 状态时,在所有触发模式下都会向通讯端自动上传测试数据,在 OFF 状态下,则不会上传测试数据。

1. 选择参数设置界面

2. 选择相关菜单项

A			١	ЛАN	×
测量	多路	比较器	设定		文件
—— 测量设定 测试模式 <u>R-V</u> 平均次数 OFF	】 触发延时 [广播模式	0.000 S	触发源 MA	N	
—— 通讯设定 模式 RS232	波特率 38400] 协议 SCF	PI 地址	<u>1</u>	
—— 系统设定 语言 中文	- 电源频率 50H2	<u></u>			
OFF	ON				
F1	F2				

按[F1] [F2]关闭和打开广播模式。

3. 上传数据的格式
多路测试功能关闭,数据格式为:
电阻,电压
±000.000E-3,±000.000E-0
多路测试开启后,数据格式为:
电阻,电压,通道号
±000.000E-3,±000.000E-0,N

3.8 多路测试设置

多路测试开关主要用于连接多路扫描测试设备,当测试仪需要连接多路扫描仪时开启,不需要时关闭。当多路功能开启后,仪器会开启外部电源提供给扫描仪用,同时广播模式打开后上传的数据后会自动添加当前的通道号。

1. 选择参数设置界面

2. 选择相关菜单项

A				MAN	ĸ
测量	多路	比较器	设定		文件
—— 测量设定 测试模式 R-V 平均次数 OFF	触发延时	0.000 S	触发源 M	AN N	
— 通讯设定 模式 RS232	波特率 38400] 协议 <mark> SC</mark>	PI 地	址 01	
—— 系统设定 语言 中文	电源频率 50H	Z			
OFF	ON	SET			
F1	F2	F3			

按[F1] [F2]关闭和打开多路测试, [F3]设置各路通道的清零值。

3.9 **系统设置**

3.9.1 语言设置

仪器提供两种语言可以选择,分别是中文和英文。满足国际客户的需求。

1. 选择参数设置界面

2. 选择相关菜单项

	MAN		⊠
测量 多路 比较器 设定	!	文件	
测量设定			
	MAN		
平均次数 [OFF]) 插模式 [OFF] 多路测试 [ON		
模式 [RS232] 波特率 38400 协议 SCPI 均	也址 01		
── 系统设定 ────			
语言 中文 电源频率 50HZ			
山立 English			
F1 F2			

按[F1] [F2]选择中文或英文界面。

电源具有 50Hz 和 60Hz 可以选择, 正确设置电源频率有利于抵抗外部干扰, 提高仪器的测试精度。

1. 选择参数设置界面

2. 选择相关菜单项

按[F1] [F2]选择电源频率为 50Hz 或者 60Hz。

第四章 比较器设置

仪器具有比较分选功能,可对测试产品的品质高低按设定值进行比较和分选输出。

4.1 比较器功能

4.1.1 比较模式开启

按[COMP]键,开启或关闭比较器。

比较器开启后,当前测量值电压电阻值会分别和该比较器下的上限 值和下限值作比较,然后通过 HANDLER 接口输出分选结果。

4.1.2 比较结果信号输出方式

当比较器功能打开时, 仪器提供三种报警输出:

1. 面板 LED 灯报警

电压、内阻不在范围内的,显示红灯 V 和红灯 R。内阻和电压都合格的显示 绿灯 IN。

- 2. 声音报警 该功能参见(4.3章节)。
- 3. 外部 I/O 口,信号输出 该功能参见(7.1章节)。

4.2 分选功能设置

4.2.2 选择相关菜单项

选择分选项,按[F1] [F2] [F3]选择2档,3档,4档比较模式。

1. 分选条件和结果关系

条件	结果
R1 ≤ 当前电阻值 ≤ R2	R_IN
当前电阻值 < R1	R_LO
当前电阻值 > R2	R_HI
V1 ≤ 当前电压值 ≤ V2	V_IN
当前电压值 < V1	V_LO
当前电压值 > V2	V_HI

举例:选择比较功能打开,分选设置为二档分选,当前比较器值设为如下:

电阻下限 R1	电阻上限 R2	
80 mΩ	120 mΩ	
电压下限 V1	电压上限 V2	
1.45V	1.55V	

2. 分选结果表

电池	内阻	电压	分选结果
1	100 mΩ	1.40 V	R_IN V_LO NG
2	100 mΩ	1.50 V	R_IN V_IN GD
3	100 mΩ	1.60 V	R_IN V_HI NG
4	60 mΩ	1.40 V	R_LO V_LO NG
5	60 mΩ	1.50 V	R_LO V_IN NG
6	60 mΩ	1.60V	R_LO V_HI NG
7	150 mΩ	1.40 V	R_HI V_LO NG
8	150 mΩ	1.50 V	R_HI V_IN NG
9	150 mΩ	1.60 V	R_HI V_HI NG

1. 分选条件和结果关系

条件	结果
R1 ≤ 当前电阻值 < R2	R_P1
R2 ≤ 当前电阻值 ≤ R3	R_P2
当前电阻值 < R1 或 当前电阻值 > R3	R_NG
V1 ≤ 当前电阻值 < V2	V_P1
V2 ≤ 当前电阻值 ≤ V3	V_P2
当前电阻值 < V1 或 当前电阻值 > V3	V_NG

举例:选择比较功能打开,分选设置为三档分选,当前比较器值设为如下。

电阻下限 R1	电阻上限 R2	电阻上限 R3
80 mΩ	120 mΩ	160 mΩ
电压下限 V1	电压上限 V2	电压上限 V3
1.40V	1.50 V	1.60 V

2. 分选结果表

电池	内阻	电压	分选结果
1	60 mΩ	1.30 V	R_NG V_NG NG
2	90mΩ	1.45 V	R_P1 V_P1 GD
3	130mΩ	1.55 V	R_P2 V_P2 GD
4	180 mΩ	1.70 V	R_NG V_NG NG

注意: 检测到测量异常, 不输出分选信号。

比较模式 4 挡

1. 分选条件和结果关系

条件	结果
R1 ≤ 当前电阻值 < R2	R_P1
R2 ≤ 当前电阻值 < R3	R_P2
R3 ≤ 当前电阻值 ≤ R4	R_P3
当前电阻值 < R1 或 当前电阻值 > R4	R_NG
V1 ≤ 当前电压值 < V2	V_P1
V2 ≤ 当前电压值 < V3	V_P2
V3 ≤ 当前电压值 ≤ V4	V_P3
当前电压值 < V1 或 当前电压值 > V4	V_NG

举例:选择比较功能打开,分选设置为四档分选,当前比较器值设为如下。

电阻下限 R1	电阻上限 R2	电阻上限 R3	电阻上限 R4
80 mΩ	100 mΩ	120 mΩ	140 mΩ
电压下限 V1	电压上限 V2	电压上限 V3	电压上限 V4
1.40V	1.50 V	1.60 V	1.70 V

2. 分选结果表

电池	内阻	电压	分选结果
1	60 mΩ	1.30 V	R_NG V_NG NG
2	90mΩ	1.45 V	R_P1 V_P1 GD
3	110mΩ	1.55 V	R_P2 V_P2 GD
4	130mΩ	1.65 V	R_P3 V_P3 GD
5	150mΩ	1.75V	R_NG V_NG NG

注意:

检测到测量异常,不输出分选信号

4.3 讯响方式设置

在仪器比较器打开或分选打开输出测试判定结果后,可以选择仪器讯响方式。

1. 选择比较器设置界面

按[PAGE]键选择 比较器页面

2. 选择相关菜单项

菜单项	意义		
[OFF]	分选讯响关闭		
[不合格]	不合格时讯响		
[合格]	合格时讯响		

4.4 **计数设置**

在仪器比较器打开时, 计数设置到 ON, 这时机器会对测试结果所在的范 围进行计数。

比较器页面

1. 选择比较器设置界面

2. 选择相关菜单项

	多路	比较器		MAN	 文件
分选 2	入 讯响 OFI	₣ 计数 (DFF	绝对值	直 ON
R10.0000m	nΩ R21.000	0mΩ R310	ן 0.000m0.	2 R4	 100.00mΩ
V11.00000	V V2 2.000	000 V V3 3	.00000	V] V4	4.00000 V
OFF	ON	ZERO			
F1	F2	F3			

按[F1] [F2]可关闭和开启分选计数功能,按[F3]对计数值清零。

4.5 绝对值设置

测试仪提供绝对值功能,对测试结果进行绝对值运算后进行比较和分选。

1. 选择比较器设置界面

按[PAGE]键选择 比较器页面

2. 选择相关菜单项

按[F1] [F2]可关闭和开启分绝对值功能。

第五章 测量

本章对用于正确测量的功能进行分阶段说明,包括启动设置、量程范围、 保护功能启动。

5.1 启动测试

- 1. 设置好相关参数。
- 2. 正确连接好测试线。
- **3.** 测试开始。

触发模式	意义		
内部触发(INT)	仪器内部自动触发测试		
外部触发(EXT)	通过外部 EXT IO 端 TRG 信号触发测试		
手动触发(MAN)	手动按[TRG]、RS232、LAN 口指令触发测试		
自动触发(AUT)	自动判断待测件并测试		

注意:

- 在测试还未结束时,不能再重新开始另一次测试。
- •当EX.I/O口的EOC信号为LOW时,不能触发测试。

5.2 测量值显示

以下是测试量程范围,一旦超出以下量程,显示(-----),测试电 流和量程范围:

阻抗测量

电阻量程	测量电流	最大显示值	分辨率 (Ω)
3mΩ	100mA	3.2000mΩ	0.1μΩ
30mΩ	100mA	32.000mΩ	1μΩ
300mΩ	10mA	320.00mΩ	10μΩ
3Ω	1mA	3.2000Ω	100μΩ
30Ω	100uA	32.000Ω	1mΩ
300Ω	10uA	320.00Ω	10mΩ
3kΩ	10uA	3.2000kΩ	100mΩ

电压测量

量程	最大显示值	分辨率
6V	±6.00000V	10uV
60V	±60.000V	100uV

5.3 进行调零

下述情况下请进行调零。(可取消各量程±3%f.s.以下的电阻)

- 因电动势等的影响而出现残留显示内容时
- 更换4端子测试线时
- 测试值出现不正常
- 测试环境温度、湿度发生变化

注意:

• 已进行调零之后,如果环境温度发生变化或变更测试线,则请再次进行 调零。

- 请在使用的所有量程内执行调零。手动量程时,仅在当前量程下进行调零;自动量程时,会对所有量程下进行调零。
- 如果测量比调零时的电阻值还小的电阻,测量值则为负值。

例: 在 300mΩ量程下连接 1mΩ电阻,进行调零。清零完毕后,如果再 短路,则显示-1mΩ。

1. 短路测试线

9363-A 测试夹型测试线

2. 确认测量值处在±50%f.s. 以内

未显示测量值时,请确认测试线的接线是否正确。

下图是接线正确时的画面:

下图是接线错误时的画面:

3. 进行调零

夹好测试夹或压紧表笔后,按[O.ADJ]键,提示清零命令将被执行,按 [ENTER] 键进行调零。按 [ESC] 键中止清零。 4. 调零执行后

调零成功,会在显示测量画面中间显示**清零成功**图标,随后返回测量 界面。调零失败,显示**清零失败**图标,返回测量界面。

调零失败

不能进行调零时,可能是进行调零之前的测量值超出各量程的满量程的 ±3%,或处于测试异常状态。请再次进行正确的接线,重新进行调零。 自制电缆等电阻值较高时,由于不能调零,因此请降低配线电阻。

注意:

在调零失败时,当前量程的调零则会被解除。

第六章 测量面板保存

所有的测量条件都可以以文件的形式保存、调取或删除。按[PAGE] 键进入文件界面。

______ 按[PAGE]键选择 参数设置页面

PAGE

进入界面后按上下键,可以参看数据保存记录,可以对当前记录进 行保存、载入、清除等操作。

6.1 保存面板设置

用上下键浏览当前设置,按[F1]键保存当前设置。共可保存 30 组测试设置条件。方便不同产品快速切换设置。

6.2 调取测量设置

用上下键浏览当前设置,按F2载入键调取当前设置。

6.3 保存测量数据设置

在除 INT 模式外的其他触发模式下,打开保存数据,那么测试数据 会按顺序保存到机器中,一共可保存 15 个文件,每个文件可保存 400 组测试数据。

1. 选择文件设置界面

2. 打开数据保存功能

F2

按[F2]键打开保存数据 设置,除INT触发模式 外的其他模式开始保存 测试数据

6.4 保存测量数据导出

插入 U 盘即可将需要查看的数据组导出到 U 盘。并在电脑上用解析 软件导出为您需要的格式。

A			MAN	」 図
测量	多路	└比较器	设定	文件
类型 [.c	iat on	Flie DA-0000.DAT DA-0002.DAT DA-0002.DAT DA-0003.DAT DA-0005.DAT DA-0005.DAT DA-0006.DAT DA-0008.DAT	Num 400 400 400 400 400 400 400 400 400	
导出	删除			
F1	F 2			

<i></i>	
F1	F2

按[F1]键可以导出选定的 数据到U盘上。按[F2]键 可以删除选定的数据。

第七章 多路测试

仪器最大支持 4 线式 24 路电池进行扫描测试。 多路测试单元的接 点有机械继电器和光耦开关二种,其中机械继电器适用于电池组串联测 试,机械继电器有一定的使用寿命,因此编程时请减少接点的打开与关闭。 光耦开关适用于单体电池测试,光耦开关具有开关速度快,无机械寿命等 特点。

7.1 多路测试设置

多路功能开启后,广播模式打开上传的数据后会自动添加当前的通道 号。

1. 选择参数设置界面

2. 选择相关菜单项

A				MAN	困
测量	多路	比较器	设定		文件
—— 测量设定 测试模式 <u>R-V</u> 平均次数 OFF		0.000 S	触发源 M	AN	
— 通讯设定 模式 <u>RS232</u>	波特率 38400] 协议 SCF	21.00.00	址 01	
—— 系统设定 语言 中文	—————————————————————————————————————	Z			
OFF	ON	SET			
F1	F2	F3			

按[F1] [F2] [F3]关闭和打开多路测试,设定多路通道开关。

菜单项	意义		
[F1]	关闭多路测试功能		
[F2]	打开多路测试功能		
[F3]	设定多路通道参数		

3. 设定多路通道开关

4. 多路通道开关

按[F1] [F2] [F3] [F4]设定每个通道开关,设置每通道的清零值。

5. 选择多路测试界面

6. 多路测试模式

7.2 连接器与端子的配置

四线制测试端口

NO.	端子名称	NO.	端子名称
1	保留	26	D7+
2	D1+	27	D7-
3	D1-	28	S7+
4	S1+	29	S7-
5	S1-	30	D8+
6	D2+	31	D8-
7	D2-	32	S8+
8	S2+	33	S8-
9	S2-	34	D9+
10	D3+	35	D9-
11	D3-	36	S9+
12	S3+	37	S9-
13	S3-	38	D10+
14	D4+	39	D10-
15	D4-	40	S10+
16	S4+	41	S10-
17	S4-	42	D11+
18	D5+	43	D11-
19	D5-	44	S11+
20	S5+	45	S11-
21	S5-	46	D12+
22	D6+	47	D12-
23	D6-	48	S12+
24	S6+	49	S12-
25	S6-	50	保留

7.3 多路测试线定义

功能

D+

D-

一号线								
引脚	2	3	4	5	6	7	8	9
颜色	棕	棕白	橙	橙白	绿	绿白	蓝	蓝白
功能	D+	D-	S+	S-	D+	D-	S+	S-
引脚	10	11	12	13	14	15	16	17
颜色	棕	棕白	橙	橙白	绿	绿白	蓝	蓝白
功能	D+	D-	S+	S-	D+	D-	S+	S-
三号线								
引脚	18	19	20	21	22	23	24	25
颜色	棕	棕白	橙	橙白	绿	绿白	蓝	蓝白
功能	D+	D-	S+	S-	D+	D-	S+	S-
引脚	26	27	28	29	30	31	32	33
颜色	棕	棕白	橙	橙白	绿	绿白	蓝	蓝白
功能	D+	D-	S+	S-	D+	D-	S+	S-
引脚	34	35	36	37	38	39	40	41
颜色	棕	棕白	橙	橙白	绿	绿白	蓝	蓝白
功能	D+	D-	S+	S-	D+	D-	S+	S-
引脚	42	43	44	45	46	47	48	49
颜色	棕	棕白	橙	橙白	绿	绿白	蓝	蓝白

S-

D+

S+

S-

S+

D-

7.4 内部电路构成

第八章 EXT I/O 口 (Handler)

仪器的后面板上的 EXT I / O 端子支持外部控制,提供测试和比较 判断信号的输出,并接受输入的 TRG 信号。所有信号均使用光耦合器。 通过仪器面板设置,了解内部电路结构和注意安全事项有利于更好的连接 控制系统。

8.1 EXT I/O 端口与信号

在本章节,您将了解到有关 EXT I/O 的连接方式和介绍。

输出端原理图

8.1.1 端口信号详解

端口和信号描述

EXT I/O 口连接器采用 36-PIN 脚的 D-SUB 母口端子。

如图:

(仪器端)

电源供给端

序号	端子名称	含义			
17		隔离信号地 (用户电源地)			
18	EXT.GIND				
35		隔离 5V 电源输出			
36	130_37				

比较输出信号

3	INDEX	采样完成信号			
4	EOC	测试完成信号(忙信号)			
5	ERR	异常测量错误输出			
26		二档分选比较器合格输出			
	GD(K_NG)	三档和四档分选电阻不合格输出			
27	27	二档分选比较器不合格输出			
		三档和四档分选比较电压不合格输出			
6		二档分选比较电压上超(不合格)输出			
V_HI(V_HI(V_PT)	三档和四档分选比较电压一等品输出			
7		二档分选比较电压合格输出			
	V_IIN(V_P2)	三档和四档分选比较电压二等品输出			
8	8	二档分选比较电压下超(不合格)输出			
V_LO(V_P3	V_LO(V_P3)	三档和四档分选比较电压三等品输出			
23 R_HI(R_F	10 מיום ס	二档分选比较电阻上超(不合格)输出			
	к_пі(к_P I)	三档和四档分选比较电阻一等品输出			
24		二档分选比较电阻合格输出			
	K_IIN(K_PZ)	三档和四档分选比较电阻二等品输出			
25	ינם ם/חו ם	二档分选比较电阻下超(不合格)输出			
	K_LU(K_P3)	三档和四档分选比较电阻三等品输出			

外部控制信号输入端

15	Comp 0	比较器记录档选择端。
14	Comp 1	可选档 1~30。
13	Comp 2	
12	Comp 3	
11	Comp 4	
16	Trig	测试触发端。

比较器记录档选择表

COMP	记录	COMP	记录	COMP	记录	COMP	记录
4-0	号	4-0	号	4-0	号	4-0	号
11111	不变	10111	8	01111	16	00111	24
11110	1	10110	9	01110	17	00110	25
11101	2	10101	10	01101	18	00101	26
11100	3	10100	11	01100	19	00100	27
11011	4	10011	12	01011	20	00011	28
11010	5	10010	13	01010	21	00010	29
11001	6	10001	14	01001	22	00001	30
11000	7	10000	15	01000	23	00000	不变

注意:为了避免损坏接口,电源电压勿超出电源要求。

为了避免损坏接口,请在仪器关闭后接线。

如果输出信号用户用于控制继电器,继电器必须使用反向能 量释放二极管。

8.1.2 端口信号连接方式

电性能参数

隔离电源输出:	+4.8~5.3VDC
	最大输出电流 100mA。
输出信号:	光耦隔离带驱动芯片。
	最大负载电压 30V。
	最大输出电流: 50mA。
输入信号:	光电隔离。
	低电平有效。
	最大电流: 50mA。

开关输入

驱动继电器

驱动 LED 灯
8.2 时序图

各信号的电平表示接点的 ON/OFF 状态,上横杠表示低电平有效。

8.2.1 外部触发时的时序图

外部触发[EXT]设置 (I/O 输出模式为保持)

注释: ERR (low) 测试异常, ERR (low) 测试正常。

	项目	时间
T1	ERR 输出响应时间	1.5mSмах
T2	TRG,信号脉宽	5mSмin
Т3	延时时间	5mS _{MAX} +测量延时
		超快 8.6mS
	ADC 采样时间(R-V 模式)	快速 18mS
14		中速 44mS
		慢速 288mS
T5	数据处理显示时间	1тЅмах

8.2.2 外部触发时的读取流程

下面所示为使用外部触发时,从测量开始~获取测量值的流程。 本仪器确定判定结果(HI、IN、LOW、ER、GD、NG)之后,立即输出 EOC 信号。控制器输入电路的响应较慢时,从检测 EOC 信号的 ON 到读 取判定结果需要等待时间。

第九章 通讯

仪器提供3种通讯模式,RS232C、RS485、LAN(以太网协议采用 TCP协议)通讯模式。仪器提供两种通讯协议,SCPI、MODBUS。通讯 指令参考光盘中的指令集。

禁止将通讯端口和测试端口相连接,否则会损坏仪器。

9.1 RS232 通讯方式

RS232通讯方式分别采用3线通讯方式。

9.1.1 接口与电缆

9.1.2 RS232 连接方式

9.1.3 RS232 通讯设置

1. 选择通讯页面

2. 选择 RS232 通讯模式

3. 选择通讯波特率

4. 选择通讯协议

9.2 RS485 通讯方式

9.2.1 RS485 连接方式

9.2.2 RS485 通讯设置

1. 选择通讯页面

2. 选择 RS485 通讯模式

MAN D	$\overline{\mathbf{X}}$
测量 多路 比较器 设定 文件	
 ── 测量设定 ────────────────────────────────────	
────────────────────────────────────	
RS 232 RS 485 TCP	
F1 F2 F3	

3. 选择通讯波特率

A			MA	N	M
测量	多路	比较器	设定	文件	
→ 测量设定 测试模式 R-V 平均次数 OFF → 通讯设定 模式 <u>R5485</u> → 系统设定 语言 中文	】 触发延时 〕 广播模式 〕 波特率 38400 电源频率 50H	0.000 S OFF ¹ 协议 SCI Z	触发源 MAN 多路测试 ON ━ PI 地址 ━	00	
9600	19200	38400	57600	1152	00

4. 地址设定

	MAN 📢	ENTER
测量 多路 比较器 设定	È ↓ 文件	
── 测量设定	MAN ON 地址 00	
语言[中文] 电源频率 50HZ		按[ENTER]进入设置并 确认上下左右键设置
		」 需要的地址位

9.3 LAN 通讯方式

LAN 口通讯采用 TCP 协议通讯。

9.3.1 接口与电缆

以太网接口采用标准的 RJ45 口, 电缆线采用 5 类以上网线。

9.3.2 LAN 连接方式

仪器与电脑连接

仪器和电脑连接时,网线采用交叉线。

A端接法采用568B标准:

B端接法采用568A标准:

绿白	绿	橙白	斟	哲	橙	棕白	棕
----	---	----	---	---	---	----	---

仪器和路由器连接时,网线采用直连线。

两端均采用568B标准:

橙白	橙	绿白	蓝	蓝白	绿	棕白	棕

9.3.3 LAN 通讯设置

1. 选择通讯页面

2. 选择 TCP 通讯模式

A			м.	AN	⊠	
测量	多路	比较器	设定	文件		
测试模式 R-V	/ 触发延时	0.000 S	触发源 MAN	l		
平均次数 OF	F 广播模式	OFF	多路测试 ON			
模式 TCP	IP地址 192.1	68.001.199	端口 502			▼ 按上下左右选择
—— 系统设定 语言 中文	电源频率 501	ΗZ				要设置的菜单项
			_			
RS 232	RS 485	TCP				
F1	F2	F 3)			

3. 设置通讯地址

9.4 USB 接口

本仪器前面板带 USB 接口,用作 HOST 功能,插入 U 盘后用于升级程序和保存数据或设置。

第十章 参数

10.1 一般参数

一般功能:

测量功能	电压、交流电阻测试
测试范围	电阻 0.1μΩ 到 3KΩ ,电压 0V 到 60V
测试速度 (MAX)	超快 100 次/秒,快速 50 次/秒,
自动触发	中速 20 次/秒,慢速 3 次/秒。
最大输出电流	100mA
量程超限显示	量程上超""
输入端子	香蕉插头
操作键	橡胶键
显示	3.5寸TFT
精度保证期	1年
堤作泪度和泪度	0℃到40℃
f朱TF/画伎和/业反	80%RH以下(无凝结)
方体泪在知泪在	-10℃到60℃
仔唯应反相述反	80%RH以下(无凝结)
操作环境	室内,最高海拔2000m
电源	电压: 100V ~ 240V AC 频率: 50Hz/60Hz
功耗	10 W
尺寸	约 325 mm x 215 mm x 96 mm
重量	约 2kg

10.2 精确度

以下指标测试条件:							
温度: 20±3℃							
湿度: <80%RH							
预热时间 15 分钟以上							
校准时间1年以内							
精确度:±(读数精度+量程精度)							

量 程 最大读数 精度(慢速) 分辨率 测试电流 3mO 1 3.2000mO 0.5%+0.04%ES 0.1µΩ 100mA 2 30mO 100mA 32.000mO 0.5%+0.02%FS 1μΩ 10µΩ 3 300mΩ 320.00mΩ 0.3%+0.02%FS 10mA 4 3Ω 3.2000 Ω 0.3%+0.02%FS 100µΩ 1mA 1 mΩ 5 30Ω 32.000 Ω 0.3%+0.02%FS 100µA 6 300Ω 320.00 Ω 0.3%+0.02%FS 10 mΩ 10µA 7 3kΩ 0.3%+0.02%FS 100 mΩ 3100.0Ω 10µA

电阻测量精度:

1: 测量电流误差±10%以内

2: 超快速时加上 0.02%FS,快速时加 0.01%FS,中速时加 0.01%FS。

3: 超快速时加上 0.1%FS,快速时加 0.04%FS,中速时加 0.02%FS。(3mΩ 档)

电压测量精度:

量程		 程	最大读数	测试精度	分辨率
	1	6V	±6.00000V	0.01%+0.001%FS	10µV
	2	60V	±60.0000V	0.01%+0.001%FS	100µV

1: 超快速时加上 0.002%FS,快速时加上 0.001%FS,中速时加 0.001%FS。

2: 电压测量 3563A 可测试最大 300V, 3563B 可测试最大 800V。

第十一章 SCPI 通讯指令

11.1 通用指令

仪器命令分为两种类型:公用命令和 SCPI(可程控仪器标准命令)命 令。公用命令由 IEEE488.2-1987 标准定义,这些命令适用于所有仪器 装置,但本仪器并不支持全部公用命令。SCPI 命令是树状结构的。

*IDN?指令
 功能:查询版本号
 举例:
 发送: *IDN?
 返回: Hopetech,3563,V1.0

2. *TRG

功能: 总线触发命令,当设置为总线触发时可用 返回:电阻值,电压值(多路功能关闭)

电阻值,电压值,通道号(多路功能开启) 例:参见 FETCH 指令

3. TRG

功能: 总线触发命令,如果不是总线触发自动改为总线触发。 返回:电阻值,电压值(多路功能关闭)

电阻值,电压值,通道号(多路功能开启) 例:参见 FETCH 指令

11.2 SCPI 指令结构

树状结构的指令最顶端为根命令(root command),或简称根 (root)。如果要到达低层的指令时,必须按照特定的路径才可以到达。 命令结束符:命令输入的结束符,例如NL(换行符,ASCII码为10)。 冒号(:):冒号是命令的层次,表示进入命令的下一层。 分号(;):分号表示开始多重命令。

- 问号 (?):问号表示查询。
- 逗号(,): 逗号是多重参数的分隔符。
- 空格():空格是命令和参数的分隔符。

图6.1表示了如何通过使用冒号、分号达到低层的指令。

图1.1 SCPI指令树形结构

11.3 SCPI 子指令系统

1. :FUNCtion {RV|RES|VOLT}

功能: 设定或查询测试模式

- 返回: RV,RES,VOLT
 - 注: RV 电压电阻测试功能 RES 电阻测试功能 VOLT 电压测试功能
 - 举例:设定测试模式
 - 发送::FUNCtion RV
 - 举例:查询测试模式
 - 发送::FUNCtion?
 - 返回: RV
- 2. :RESistance:RANGe {<numeric_value>}
 - 功能:设定或查询电阻量程
 - 返回: numeric, 范围 0-6
 - 举例:当前量程设置为5量程
 - 发送::RESistance:RANGe 5
 - 举例: 询问当前量程
 - 发送::RESistance:RANGe?
 - 返回:5
- 3. :VOLTage:RANGe {0|1|2}
 - 功能:设定或查询电压量程
 - 返回: 0-2
 - 举例:当前量程设置为1量程
 - 发送::VOLTage:RANGe 1

举例:询问当前量程 发送::VOLTage:RANGe? 返回:1

- 4. :AUTorange {0|1|OFF|ON}
 - 功能:设定或查询量程自动
 - 返回: 0 关闭,1 开启
 - 举例:量程自动设置
 - 发送::AUTorange OFF
 - 返回: 0 关闭,1 开启
 - 举例: 询问当前量程自动
 - 发送::AUTorange?
 - 返回: 0
- 5. :SAMPle:RATE {EX|FAST|MEDium|SLOW} 功能:设定或查询采样速率

返回:FAST 快速,MED 中速,SLOW 慢速

- 举例:设定采样速率
- 发送::SAMPle:RATE OFF
- 返回: 0 关闭,1 开启
- 举例: 查询采样速率
- 发送::SAMPle:RATE?
- 返回: SLOW
- 6. :CALCulate:AVERage:STATe{0|1|OFF|ON}
 - 功能:设定或查询平均功能是否开启
 - 返回: 0 关闭,1 开启
 - 举例: 询问平均功能是否开启
 - 发送: :CALCulate:AVERage:STATe?
 - 返回:0

7. :CALCulate:AVERage {<numeric_value>}

功能:设定或查询平均次数

- 返回: 2-16
- 举例:查询平均次数
- 发送: :CALCulate:AVERage?
- 返回:2
- 举例:设定平均次数
- 发送: :CALCulate:AVERage 5
- 8. :CALCulate:LIMit:STATe {0|1|OFF|ON}
 - 功能:设定或查询比较器是否开启
 - 返回: 0 关闭,1 开启
 - 举例:查询比较器是否开启
 - 发送: :CALCulate:LIMit:STATe?
 - 返回:0
 - 举例:设定比较器开启
 - 发送:: :CALCulate:LIMit:STATe ON
- 9. :CALCulate:LIMit:BIN {2|3|4}
 - 功能: 设定或查询比较器分选档数
 - 返回: 2 上下限分选,3 三档分选,4 四档分选
 - 举例:查询比较器分选档数
 - 发送: :CALCulate:LIMit:BIN?
 - 返回:2
 - 举例:设定比较器分选档数
 - 发送::CALCulate:LIMit:BIN 2

10. :CALCulate:LIMit:BEEPer {OFF|HL|IN}

- 功能: 设定或查询比较器讯响输出
- 返回: OFF 讯响关闭, HL 不合格讯响, IN 合格讯响
- 举例:查询比较器讯响输出
- 发送: :CALCulate:LIMit:BEEPer?
- 返回: OFF
- 举例:设定比较器讯响输出
- 发送: :CALCulate:LIMit:BEEPer HL
- 11. :CALCulate:LIMit:RESistance {1|2|3|4},{<numeric_value>}
 - 功能: 设定或查询比较器电阻值
 - 返回: <numeric_value>
 - 举例:设定比较器电阻值1
 - 发送: :CALCulate:LIMit:RESistance 1,2e1
 - 举例:查询比较器电阻值1
 - 发送: CALCulate:LIMit:RESistance? 1
 - 返回: 20.000
- 12. :CALCulate:LIMit:VOLTage {1|2|3|4},{<numeric_value>}
 - 功能: 设定或查询比较器电压值
 - 返回: <numeric_value>
 - 举例:设定比较器电压值1
 - 发送: :CALCulate:LIMit:VOLTage 1,2
 - 举例: 查询比较器电压下限值 1
 - 发送: :CALCulate:LIMit:VOLTage 1
 - 返回: 2.00000

13 :SYSTem:LFRequence

- 功能: 设定或查询电源频率
- 返回: 50,60
- 举例:查询电源频率
- 发送::SYSTem:LFRequence?
- 返回: 50
- 举例:设定电源频率
- 发送::SYSTem:LFRequence 50

14 :SYSTem:SAVE

功能: 保存目前状态下的测试模式,测试速度,测试量程,触发延时,比 较器设定信息

15 :SYSTem:LOAD

功能: 载入已保存的测试模式,测试速度,测试量程,触发延时,比较器 设定信息

- 16 :TRIGger:SOURce
 - 功能:设定或查询触发源
 - 返回: INT, MAN, EXT, AUT
 - 举例:设定触发源
 - 发送::TRIGger:SOURce INT
 - 举例:查询触发源
 - 发送: :TRIGger:SOURce?
 - 返回: INT
- 17 :TRIG:DELay
 - 功能: 设定或查询触发延时
 - 返回: 0 to 9.999
 - 举例:设定触发延时
 - 发送::TRIG:DELay 1
 - 举例: 查询触发延时

发送::TRIG:DELay?

返回:1

18 :FETCh?

功能: 返回测试结果

当多路功能关闭时,返回格式:

ΩV 模式返回 < Resistance value >, < Voltage value >

Ω模式返回<Resistance value>,

V 模式返回 < Voltage value >

当多路功能打开后,返回格式:

ΩV 模式返回<Resistance value>,<Voltage value>,<N>

Ω模式返回<Resistance value>,<N>

V 模式返回<Voltage value>,<N>

测量电阻值数据格式

No.	量程	正常测试值	量程上超	测量失败
1	3mΩ	±00.000E-3	±10.0000E+8	±10.0000E+9
2	30mΩ	±000.000E-3	±100.000E+7	±100.000E+8
3	300mΩ	±0000.00E-3	±1000.00E+6	±1000.00E+7
4	3Ω	±00.0000E+0	±10.0000E+8	±10.0000E+9
5	30Ω	±000.000E+0	±100.000E+7	±100.000E+8
6	300Ω	±0000.00E+0	±1000.00E+6	±1000.00E+7
7	3000Ω	±00.000E+3	±10.0000E+8	±10.0000E+9

测量电压值数据格式

No.	量程	正常测试值	量程上超	测量失败
1	6V	±0.0000E+0	±1.00000E+9	±1000.00E+7
2	60V	±==.===E+0	±10.0000E+8	±10.0000E+9

通道号值数据格式

0~99

第十二章 MODBUS 通讯指令

通讯协议采用 MODBUS 格式,模式采用 RTU。即 3.5 个停止位作为 起始和终止位。每个字节数据间时间不超过 1.5 个停止位。选定串口种类 (Rs232/Rs485),并将将仪器的通讯波特率设成和上位机一致。串口通 讯格式:数据位 8 位,停止位 1 位,无硬件握手。

12.1 寄存器概述

12.1.1 保持寄存器

名称	地址	值
测试功能	0x0001	R:0x0000,V:0x0001,
		RV:0x0002
电阻量程	0x0002	0x0000-0x0006
电压量程	0x0003	0x0000-0x0002
量程自动	0x0004	ON:0x0001, OFF:0x0000
采样速率	0x0005	EX:0x0000,FAST:0x0001,
		MED:0x0002, SLOW:0x0003
平均次数	0x0006	0x0001-0x0010
比较器开关	0x0007	ON:0x0001, OFF:0x0000
比较器档位	0x0008	0x0002-0x0004
比较器讯响	0x0009	OFF:0x0000,HL:0x0001,
		IN:0x0002
触发源	0x000A	0x0000-0x0003:
		INT MAN, EXT, BUS
触发延时	0x000B	0-9999
电阻上限值 1H	0x000C	IEEE32 格式
电阻上限值 1L	0x000D	IEEE32 格式
电阻上限值 2H	0x000E	IEEE32格式

电阻上限值 2L	0x000F	IEEE32 格式
电阻上限值 3H	0x0010	IEEE32 格式
电阻上限值 3L	0x0011	IEEE32 格式
电阻上限值 4H	0x0012	IEEE32 格式
电阻上限值 4L	0x0013	IEEE32 格式
电压上限值 1H	0x0014	IEEE32 格式
电压上限值 1L	0x0015	IEEE32格式
电压上限值 2H	0x0016	IEEE32 格式
电压上限值 2L	0x0017	IEEE32 格式
电压上限值 3H	0x0018	IEEE32 格式
电压上限值 3L	0x0019	IEEE32 格式
电压上限值 4H	0x001A	IEEE32 格式
电压上限值 4L	0x001B	IEEE32 格式
清零	0x0020	1: 清零

12.1.2 输入寄存器

名称	地址	值
电阻值 H	0x1001	IEEE32 浮点数格式
电阻值 L	0x1002	IEEE32 浮点数格式
电压值 H	0x1003	IEEE32 浮点数格式
电压值 L	0x1004	IEEE32 浮点数格式
电阻测量结果	0x1005	IEEE32 浮点数格式
电压测量结果	0x1006	IEEE32 浮点数格式

测量结果说明:

0: OFF 1: IN 2: HI 3: LO

12.2 MODBUS 指令

12.2.1 读保持寄存器指令 (0x03)

请求帧		
地址码	0x01~0xFF	1 字节
指令码	0x03	1 字节
起始寄存器地址		2 字节
寄存器数量		2字节
CRC 校验码		2 字节

正常响应帧			
地址码	0x01~0xFF	1 字节	
指令码	0x03	1 字节	
字节数		1 字节	
输入寄存器		n 字节	
CRC 校验码		2 字节	

异常响应帧			
地址码	0x01~0xFF	1字节	
异常码	083	1 字节	
错误码	01-04	1 字节	
CRC 校验码		2 字节	

举例:

读仪器的电阻量程+电压量程(仪器地址为 01) 发送:01 03 0002 0002 65CB 仪器返回:010304000400017A32 仪器的电阻量程为 0004, 电压量程为 0001

12.2.2 读输入寄存器指令 (0x04)

请求帧			
地址码	0x01~0xFF	1 字节	
指令码	0x04	1字节	
起始寄存器地址		2 字节	
寄存器数量		2 字节	
CRC 校验码		2 字节	

正常响应帧				
地址码	0x01~0xFF	1 字节		
指令码	0x04	1 字节		
字节数		1 字节		
输入寄存器		n 字节		
CRC 校验码		2 字节		

异常响应帧			
地址码	0x01~0xFF	1 字节	
异常码	084	1字节	
错误码	01-04	1 字节	
CRC 校验码		2 字节	

举例:

读仪器测试的电阻值和电压值 发送:01 04 1001 0004 A4C9 仪器返回:010408E7D49B3E260A9D3FC98A 仪器的电阻值为 0.304Ω, 电压值为 1.2269 注:仪器返回的数据为 IEEE 格式,有关 IEEE 格式参考附录

12.2.3 写寄存器指令 (0x10)

请求帧		
地址码	0x01~0xFF	1字节
指令码	0x10	1 字节
起始寄存器地址		2 字节
寄存器数量		2 字节
字节数		1字节
寄存器值		N 字节
CRC 校验码		2 字节

正常响应帧				
地址码	0x01~0xFF	1 字节		
指令码	0x10	1 字节		
起始地址		2 字节		
寄存器数量		2 字节		
CRC 校验码		2 字节		

异常响应帧			
地址码	0x01~0xFF	1 字节	
异常码	0x90	1字节	
错误码	01-04	1 字节	
CRC 校验码		2 字节	

举例:

设置仪器的电阻量程 10mΩ+电压量程 60V(仪器地址为 01) 发送:01 10 0002 0002 0001 0001 E276 仪器返回:011000020002E008 仪器设置成功

12.2.4 触发仪器测试指令 (0x74)

请求帧			
地址码	0x01~0xFF	1 字节	
指令码	0x74	1字节	
CRC 校验码		2 字节	

正常响应帧			
地址码	0x01~0xFF	1 字节	
指令码	0x74	1 字节	
字节数		1 字节	
输入寄存器		n 字节	
CRC 校验码		2 字节	

举例:

读仪器测试的电阻值和电压值 发送:01 74 00 07 仪器返回:017408E7D49B3E260A9D3FC98A 仪器的电阻值为 0.304Ω, 电压值为 1.2269 附录: IEEE32 浮点数、有符号整数的数据表示格式

IEEE32 是国际电工委员会制订的浮点数表示方式,主要内容是用 4 个字节来表示浮点数,可以表示的数据的负数范围是-2*2¹²⁸~-2⁻¹²⁷, 2⁻¹²⁷~2*2¹²⁸。如下图所示,最高位(bit31)表示浮点数的符号位 (0 为正, 1 为负);bit30-bit23 这 8 位表示浮点数的阶码 (以 2 为底),取值范围 0-FF (十六进制),用 7F 表示阶码为 0,80 表示阶码为 1,7E 表示阶码 为-1,依次类推。bit22-bit0 表示浮点数的尾数的小数部分,尾数的整 数部分缺省永远是 1。

现用一个例子简要说明 IEEE32 浮点数的表示方法,假设现在有一个 IEEE32 浮点数,它的十六进制格式是 0X42C80000,二进制格式是 01000010 11001000 00000000 00000000,按照上面的规则,阶 码应该是 10000101,即 0X85,尾数的小数部分是二进制的 0.1001, 换算成十进制即是 0.5625,由于尾数的整数部分缺省永远是 1,因此该 浮点数的值应该是+1.5625*2^{85-7F}=100。

由于 IEEE32 浮点数只用 4 个字节即可以表示很大范围的数据,因此在通讯中经常使用,以提高通讯效率。IEEE32 浮点数在二进制通讯方式中使用较多。在实际通讯过程中,如果 I/O 设备采用的是 INTEL 公司

100

的 CPU,则在通讯过程中不管是 I/O 设备向 PC 机还是 PC 机向 I/O 设备 发送浮点数,都必须按照字节 0、字节 1、字节 2、字节 3 的顺序发送如, 果 I/O 设备采用的是 MOTOROLA 公司的 CPU,数据即发送顺序则相反。 这种情况并不绝对,只代表多数情况,在涉及到数据格式时应首先以 I/O 设备的使用手册为准。

16 位及 32 位有符号整数

16 位和 32 位有符号整数使用最高位作为符号位,0 代表正数,1 代表负数,负数用补码表示,例如用 16 位有符号整数表示-100,应该是 +100 的补码,即 0X64 的补码 0XFF9C。

本说明书由和普电子科技技术部负责编辑和修订,版本号 V3.5。 说明书有误或不合理处,请与我们联系,欢迎来电进行技术咨询。 制造商:常州市和普电子科技有限公司 制造商地址:常州市新北区太湖西路 88 号 A 座 5 楼 电话:0519-89852525 传真:0519-89853517 网址:<u>www.hopetech.cn</u>

- 联系方式如有变动,请关注本公司网站。
- 本说明书的版权和解释权归本公司所有。